
Utku Kaya, Msc.
Deparment of Mathematics,
Ludewig-Meyn-Str. 4,
D-24118 Kiel, Germany
kaya@math.uni-kiel.de

Exercise Sheet 2
Introduction to Scientific Programming

with Python
27.02.2020

The aim of this exercise sheet is to provide guidance for implementing several quadrature
formulas for numerical integration. We are interested in approximating∫ b

a
f (x)dx

where a, b ∈ R. For a given N ∈N>0, h = (b− a)/N be the width of subintervals. We call xi = a+ hi
the nodal points.
Exercise 1 Open an empty file and name it as quadrature.py. Create a class named Integrator.

As first step prepare an __init__() function that receives arguments f , a, b and N. Assign following
expressions to the attributes in the constructor:
(a) An array [x0, x1, · · · , xN] by using np.linspace
(b) The subinterval size h = (b − a)/N.
(c) The function f .

import numpy as np

class Integrator():
"""A class to integrate functions numerically.
Create an object by Integrator(f, a, b, N)
f = Integrand function
a = Interval lowerbound
b = Interval upperbound
N = Number of subintervals
"""
def __init__(self, f, a, b, N):

""" (Integrator , f, a, b, N) -> NoneType
Create an Integrator with N intervals.
"""
self.a = a
self.b = b
self.N = N
self.x = 0 # TODO: Part (a)
self.h = 0 # TODO: Part (b)
self.f = f # TODO: Part (c)

This file will be extended in Exercises 3 and 4.
Exercise 2 On the Python shell import the quadrature module from Exercise 1 by typing

>>> import quadrature



>>> help(quadrature)

Now we can create an object quad as an instance of Integrator class. Type

>>> quad = quadrature.Integrator(0, 0, 1, 10)

This creates an object, that receives arguments f = 0, a = 0, b = 1, and N = 10. Type the following
lines in order to check if your implementation from Exercise 1 is correct.

>>> print('The interval ({0},{1}) is divided into {2} '
... 'subintervals. \nThe nodal points are {3} '.format(
... quad.a, quad.b, quad.N, quad.x ))

If the output is correct continue with Exercise 3. Otherwise, check your implementation from
Exercise 1.
Exercise 3 Reopen the quadrature.py file from Exercise 1. Define a new function named
midpoint in order to implement the summed midpoint rule. Recall that:

Mh(f ) = h
N∑
i=1

f
(
xi + xi−1

2

)
.

(a) Create an array [m1,m2, · · · ,mN] where mi = xi+xi−1
2 , i = 1, · · · , N,

(b) Create an array [y1, y2, · · · , yN] where yi = f (mi), i = 1, · · · , N,
(c) Sum all elements of y, multiply with h and save as T.

>>> def midpoint(self):
... """ (Integrator) -> float
... Numerical integration by midpoint rule
... """
... s = # TODO: Part (a)
... y = # TODO: Part (b)
... T = # TODO: Part (c)
... return T

Exercise 4 Since the quadrature.py file is modified in Exercise 3, restart your bash and import
the quadrature module by typing

>>> import quadrature

Now create an object, that is integrator for exponential function in the interval (0, 1) using 10
subintervals.

>>> quad = quadrature.Integrator(np.exp, 0, 1, 10)

Note that, in order to be able to call the exponential function (np.exp), we need to import numpy.
Type

>>> import numpy as np

Finally, we can compute and print the approximate integral by typing

>>> result = quad.midpoint()
>>> print(result)

2



Exercise 5 Implement the trapezodial and Simpson’s rules similarly as in Exercise 3. Finally,
we want to consider the error behaviours for increasing numbers of subintervals. Create a new
file named testquad.py.
(a) Create an array called errmidpoint with 5 zero elements.
(b) Calculate the numerical integral for exponential function over the interval (0, 1) for N ∈
{10, 20, 40, 80, 160} and assign the errors to each array component. For example, for N = 10:

>>> exactintegral = np.exp(1)-1.
>>> quad = quadrature.Integrator(np.exp, 0, 1, 10)
>>> errmidpoint[0] = fabs(exactintegral - quad.midpoint())
>>> print(result)

Place the above lines in a for loop, so that the calculations for different N will be performed
sequentially and saved in the array errmidpoint.
(d) Save the errors from Trapezoidal and Simpson’s rules in errtrapez, errsimpson analogously
to part (c).
(e) Calculate the convergence rates. For example:

>>> convratemid = np.log(errmid[:-1] / errmid[1:])/np.log(2)
>>> print(convratemid)

Exercise 6 Define a function f = x ∗ exp(x) and integrate over (0, 1) numerically. Report your

results as in Exercise 5.

3


