Introduction

to Scientific Computing
with Python

Utku Kaya

Department of Mathematics
University of Kiel, Germany

26 02 2020

Today’s Overview

m NumPy introduction

m Numerical integration

Installing NumPy

NumPy is the fundamental package for scientific computing with
Python.

Be sure that NumPy is installed on your computer!

Type on terminal:

Import:

>>> import numpy as np

Vectors and matrices

A vector can be saved as one dimensional array.
>>> v = np.array([2,3,4])

>>> print(v)
>>> v.ndim

2
We created an array correspondingtov = | 3
4

Vectors and matrices

A matrix can be saved as two dimensional array.

>>> A = np.array([[1., 2., 3.1, [4., 5., 6.1])
>>> print(A)
>>> A.ndim

| 1 2 3
We created an array corresponding to A = <4 5 6)

Vectors and matrices

The type of an array can be pre-set.
>>> A = np.array([[1., 2.], [4., 5.1], dtype = complex)
Ask the size of arrays in each dimension

>>> v.shape
>>> A.shape

It returns a tuple of integers (dim1, dim2, ---, dimN).
If v € R” then the shape is (n,).

if A€ R"™™ (n rows and m columns) then the shape is (n,m).

Vectors and matrices

Transpose of A:
>>> print(A.T)

Create identity matrix / € R"*" n = 3:

>>> 1 = np.eye(3)

Vectors and matrices

Create an empty array of shape (3,4):

>>> C = np.zeros((3,4))
>>> print(C)

Create an array with integer elements up to 6:

>>> t = np.arange(6)
>>> print(t)

Create an array with elements starting from 0, up to 2 with 0.3
increment:

>>> w = np.arange(0, 2, 0.3)
>>> print(w)

Vectors and matrices

Create an array with 100 elements starting from 0, up to 2

>>> x = np.linspace(0, 2 * np.pi, 100)
>>> print(x)

Evaluate sinus function for the each element of array x:

>>> y = np.sin(x)
>>> print(y)

Arithmetic operations

Arithmetic operators are performed on arrays element-wise!

>>> a = np.array([20, 30, 40, 50])
>>> b = np.arange(4)

>>> p

>>c=a - b

>>> C

>>> P k%= 2

>> b < 5

Array operations

>>>
>>>
>>>
>>>
>>>
>>>

a =

b =

axb
np.sum(a)
np.sum(afl:])
np.sum(af:-1])

np.array([1, 1, 4])
np.array([2, 0, 5])

dot product

summation of elements of a

sum starting from element nr. 1
sum until element last element

Array operations

>>>

>>>

>>>
>>>
>>>
>>>
>>>

A = np.array([[1,

(o, 111)

B = np.array([[2,

[3, 411)
A.dot(B)

A x B
np.sum(A)
np.sum(A[O,
np.sum(A[1,

2 1)
:1)

#
#
#
#
#

1],
o1,

matrix product

elementwise product

summation of elements of A

sum of elements in row zero of A
sum of elements in row one of A

Midpoint rule

Leta,b e R, N € Z,. We are interested in approximations of
fab f(x)dx by using summed quadrature formulas. Consider N + 1
equidistant points a = xo < x1 < --- < xy = b with h = (b — a)/N.

N
Midpoint rule: Mp(f) = h E f(%)
=i

Theorem
If f € C%[a,b]: 3¢ € [a, b] such that

b—a 2l
LR G)

/b f(x)dx — My(f) =

For proof see Stoer, Bulirsch.

Trapezoidal rule

N
f(xi— f(x;
Trapezoidal rule: Th(f)=h Z (X:1)2+(X/)
i=1

If f € C?[a,b]: 3¢ € [a, b] such that

b—a
12

hF (€)

b
/ f(x)dx — Tp(f) = —

Simpson’s rule

Simpson’s rule: Su(f) = STh(F) + ZMp(f)

If f € C*a, b]: 3¢ € [a, b] such that

/b F(x)dx — Sh(f) = 2= 2n*r)(¢)

180

A numerical integration class

See the Exercise sheet 2 for explanation.

Thanks for your attention!

